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Why not the usual?

 |n Mathematics, we know that the distributive
property allows 7(x + 5) = 7x + 35

* With derivatives, (f +g)' =f'+ g’
e With integrals, f(f(x) +
gx))dx = [ f(x)dx + [ g(x)dx

So it seems that we can start to generalize a
concept like this in some areas.



Linear Transformations

e A Linear Transformation (or linear map) is a
special type of function where:

" F(x+y)=F(x)+F(y) and
» F(kx) = kF(x) for a constant/scalar k.

These functions are extensively studied in Linear Algebra

(Math 270) and get their name by always mapping a line
into a line.

Not all functions are linear transformations, which means
we need to do a bit more examination.



What else could it be?

e With other areas of mathematics, we saw that

" log(x) + log(y) # log(x +y)
" (X+y)2 £ X2 +y2
" (x+y)3£X3+y3
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So what should we do with cos(x + y) and
sin(x + y)?



First attempt at Linear Transformation

Does cos(x + y) = cos(x) + cos(y)?

Try with some known values:

COS (% + g) = COS (g) + cos (g)

o) s

Finish this result to see if it checks out.



So that failed... let’s try distance!

Find cos(x — y) based on the unit circle.




So that failed... let’s try distance! (2)

Find cos(x — y) based on the unit circle. Label the coordinates of each point.

(cos (x —y), sin (x—1vY))

(cos x, sin x)
cos Yy, siny)

Figure 1 Figure 2



Find cos(x — y) based on the unit circle.

Distance between the two labeled points in
Figure 1.

d = +/(cosx — cosy)? + (sinx — siny)?

d = +/cos?x — 2cosxcosy + cos?y + sin?x — 2sinxsiny + sin?y

d = +/(cos2x + sin2x) + (cos?y + sin?y) — 2cosxcosy — 2sinxsiny

d = \/1 + 1 — 2cosxcosy — 2sinxsiny

d= \/2 — 2cosxcosy — 2sinxsiny

d = /2 — 2(cosxcosy + sinxsiny)

Keep this in mind as we move to the next part.



Find cos(x — y) based on the unit circle.

Distance between the two labeled points in
Figure 2.

d = +/(cos(x —y) — 1)2 + (sin(x — y) — 0)2

d =/ cos?2(x —y) — 2cos(x — y) + 1 + sin2(x — y)
d= \/(cosz(x —y) + sin?(x — y)) + 1 —2cos(x —y)
d=\/1+1—Zcos(x—y)=\/2—2605(x—y)

Now compare this to the previous distance:d = \/2 — 2(cosxcosy + sinxsiny)

Since the distances must be the same, we conclude that:
cos(x —y) = cosxcosy + sinxsiny

Want sin(x — y), then just check the complement:

sin(x —y) = cos (g — (x — y)) = cos ((g — x) — (—y)).



What about the other ones?

You can use a similar
picture to graph
addition, but in this
case, you’'ll need to

think of a clockwise ~ ~—— yTi e

rotation of an angle,
so one angle will be

negative.




Trigonometry review

We’'ll take a look at standard (unit-circle) triangles and expand it.

1
/‘ sin(x)

cos(x)

What happens when the hypotenuse (radius) is not 1?
2
/I

Let’s try one more just to see if we’ve got it down. What would be the lengths

of the sides in this picture?
/I*




Picture version — with a twist! (1)

Draw an angle, x, and extend
it for a while. Then from the
same vertex, draw angle y
down from x (clockwise).
Extend the length to be 1.
From the ray that created
angle x, construct a right
angle that goes through the
endpoint creating angle y.
Finish by drawing parallel and
perpendicular lines as
needed. Then label the sides
using your trigonometric
knowledge from the previous
slide.

It’s kind of fun, too! ©




Picture version — with a twist! (2)

The right
( triangle formed

with the bottom
and angle x
creates another
angle, 90° — x.
Label this angle.




Picture version — with a twist! (3)

Using
complementary
angles and alternate
interior angles from
parallel lines, label
the other x angles in
the picture. These
will be extremely
helpful in the next
few steps. Notice
that the only length
labeled is “1”
currently.




Picture version — with a twist! (4)

Now, using the right
triangle with y as
one angle and 1 as
the hypotenuse,
label the other two
sides. This is
effectively what
you would do with
a unit circle
triangle, but in this
case, there is no
circle.




sinxcosy

Picture version — with a twist! (5)

COS X COS Y

sin (x—y)

cos (x—y)

Now, using the right
triangle with x as one
angle (top left), the one
with a hypotenuse of
cos Yy, label the other
two sides. And while
we’re at it, let’s label
the bottom right
triangle with an angle of
X —y that has
hypotenuse of 1 as well.
You'll notice that the
picture is getting rather
busy... but we need all
these pieces.

Almost done!



sinx cosy

Picture version — with a twist! (6)

cosxcosy

COS X Sin

YN

sin (x—y)

cos (x—y)

Lastly, label the top right
triangle with an angle of x
and hypotenuse of sin y.

Phew. All done.

Do you see the identities
for cos(x —y) and sin(x —y)
in the picture?

Look at the lengths of
horizontal and
perpendicular sides. ©



Other pictures

cos(a+PB) sina sinp sinfla-B) cosa sinf

0l W
2 5
o o
€ u,

— =1 — =

o ™ ual ™

cha i

= i

=i up

=

@ W 3 2
= tn
o o
0 0
o
& &
Tl ol

cosa cos B sina cos B
sinffa+PB)=sinacosfP+cosasinp sinfla-P)=sinacos P -cosasinP

cosia+B)=cosacosP -sinasinp cosla-B)=cosacosB+sinasin



There are many other techniques

Many of the other methods can involve distance
or pictures, but rely on the law of cosines.

But is there another way... a way that doesn’t
require long arithmetic, memorizing or
remembering some picture, or remembering
some method to create a picture that would
work?



Euler to the Rescue

Euler’s (trigonometric) formula:
e = cos(x) + isin(x)

This equation comes from rotating a line in the complex plane. We can’t do any manipulation on the complex portion
to turn it into the real portion. If we have two equivalent complex numbers, their real parts must be the same and the
complex parts must be the same.

Now that we have the basis, let’s check how it works (calculators out if possible):
\/_

. ei(E) = COoS (g) + i sin (g) = %+ 73 i. This corresponds to the point G?) on the unit circle.

e e =cos(m)+isin(r) =—-1+0i=-1.

Rewriting this and you’ll get: e = —1 — e + 1 = 0. This is one incredible formula as it includes the five most
important constants in all of mathematics together with no additional coefficients.

0 e, the natural number

i, the imaginary number

1, the constant pi related to a circle
1, the additive identity

0, the multiplicative identity

O 0 O0Oo

Richard Feynman, an incredibly famous physicist, claimed this was the jewel of mathematics. Some have written that
because of the innate beauty and simplicity of this equation, that Euler used it as a proof that god must exist.



Why is this formula so powerful?

elx+y) — cos(x +y) +isin(x +y) (1)
ity = (cos(x) + i sin(x))(cos(y) + i sin(y))

e!+Y) = cos(x)cos(y) + i sin(x)cos(y) +
i sin(y)cos(x) + i? sin(x)sin(y)

e!&+Y) = cos(x)cos(y) + i sin(x)cos(y) +
i sin(y)cos(x) — sin(x)sin(y)

e!*+Y) = cos(x)cos(y) — sin(x)sin(y) +
i (sin(x)cos(y) + sin(y)cos(x)) (2)

At this point, we will need to equate the real parts and the imaginary parts of the two equations.



Why is this formula so powerful? (2)

e!t+Y) + i sin(x +y)| (1)

e!x+¥) Jcos(x)cos(y) — sin(x)sin(y) |+

i (sin(x)cos(y) + sin(y)cos(x)) (2)

Once you do this, you can see two identities with just one quick expansion of the
distributive property:

* Red (Real): cos(x + y) = cos(x)cos(y) — sin(x)sin(y)

e Green (Imaginary): sin(x + y) = sin(x)cos(y) + sin(y)cos(x)

You could continue doing this with e! =) a5 well; no pictures needed, and very little
algebra. As an added bonus, the derivation is extremely quick and you get two
formulas each time!



Why is this formula so powerful?

What about other identities? Maybe Even/Odd?
e (=% = cos(—x) + i sin(—x)

ei(—x) — e—ix — 1 _ 1

e*  cos(x) + isin(x)
Multiply by the complex conjugate.

1 (cos(x) — i Siﬂ(X))

cos(x) + i sin(x) \ cos(x) — i sin(x)
_ cos(x)—isin(x)
"~ cosZ(x)+ sin2(x)

= cos(x) + i(—sin(x))

So this means that cos(—x) = cos(x) and sin(—x) = —sin(x)

No pictures... just a little algebra!



Could we do more?

Heck yes! We could use this to find the sum to product formulas, but they require the
ability to remember a substitution in the middle of the problem. These types of
substitutions do come up in calculus, but we’ll leave them off for now.

What kind of substitutions?

When you look at x, you probably don’t immediately think x = x + O.
Further, you probably don’t think x + 0 = x + % — %' right?

Oh, and once you do think about these, do you immediately think:

X X X X X+ X—
2 2 2 2 2 2 2 2 2 2 2 2

Well, those are the types of substitutions needed for the sum-to-product formulas.



Why use it?

Euler’s formula is a tool you can use, but don’t have to. Like many things in
math, it is extremely useful at times and not as useful in other situations.

Try it out. As you get comfortable with it, you may find some very interesting
results!

Added bonus, this opens up a whole new world. Indeed, if e'™ = —1, which
we confirmed that it did on an earlier slide, then we could rewrite this using
logarithms: e'™ = —1 & [n(—1) = in

So logarithms could actually be defined over negative numbers if we allowed
complex number outputs. Test this on your calculator in complex mode to see
the result. Back when covering logarithms, the domain was restricted to all
non-negative real numbers... but that was needed to get the result to be a
real number. Expanding our definition/domain will allow us to MORE, not
less. Now, go explore!



How Important are the Addition
Formulas?

Back in the 1950s, Professor Hans Rademacher* showed that all of
trigonometry could be developed with just two functions that he
called “C” and “S” as long as:

1. Clx—y)=CXx)CH) +SH)SH)

2. S(x—y)=Sx)C(y) —Sx)C(y)
3 lim ¥ =1

x—-0t X
Those of you in calculus may recognize (3) as one of the most

important limits in calculus, necessary for the formulation of
trigonometric derivatives.

*Mathematics Teacher Vol L (January 1957) pp. 45-48.



Calc link (power reduction) - 1

f cos?(x)dx = f COS(Z;) t1 dx

e* = cos(x) + i sin(x)

e " = cos(x) — i sin(x)

eix_l_e—ix
2

So e* + e~ = 2cos(x) which means cos(x) =

e?*+2+e7 2% 2c0s(2x)+2
4 - 4

, 2
elx_l_e—lx)

This means cos?(x) = ( -



Calc link (power reduction) - 2

Expanding the technique from the previous page, we can even do
something like this:

. 2cos(6x) + 12cos(4x) + 30cos(2x) + 20
f cos®(x)dx = j

el dx

It helps to remember Pascal’s triangle:

1 6 15 20 15 6 1



Calc link (power reduction) - 3

X —1X . .
cos(x) = , which means e* + e™ = 2cos(x).
ix —ix\ © ix —ix®
c0s® (x) = e"te 7\ _ (e™ + ™)
2 26

Using Pascal’s Triangle for coefficients:
(a + b)® = a® + 6a®b + 15a*b? + 20a3b® +15a? b* + 6ab> + b®

Expanding the binomial:
(e + e7)° = (e%)° + 6(e™%)” (e7) + 15(e®) *(e*)” +

20(e®)*(e7)* + 15(ei%)* (e7¥)* + 6(e*) ()" + (e7¥)°
Simplifying exponents:

(eix + e—ix)6 — ei6x + 6ei5x(e—ix) + 156i4x(e—i2x) +
Zoein(e—in) + 1Sei2x(e—i4x) 4+ 6eix(e—i5x) 4+ e—i6x



Calc link (power reduction) - 4

Simplifying exponents:
(eix + e—ix)6 = el6X | p—16X 4 goldX | go—i4X | 15p12X 4 150~i2X 4 2()pl0X

Grouping like objects:
(e™ + e‘ix)6 = (™% + 716%) + 6(e™* + e71¥) + 15(e™?* + 15¢712*) + 20

Euler’s formula then substitutes since e™* 4+ e ™%* = 2cos(x):
(eix + e‘ix)6 = 2c0s6x + 6(2cosdx) + 15(2cos2x) + 20

2cos(6x)+12cos(4x)+30cos(2x)+20

This shows why cos®(x) = ”

And now you can do the integration in calculus Il much quicker:

. 2cos(6x) + 12cos(4x) + 30cos(2x) + 20
j cos®(x)dx = f dx

64



Further links

Those in Calculus 2 will see series. You could confirm Euler’s formula using
using Maclaurin series for each function e** = cos(x) + i sin(x).

In Pre-Calculus 2 (Math 131), a useful result is that every complex number can
be expressed in polar coordinates.

Another Pre-Calculus 2 result is DeMoivre’s Formulg that can be extended
and used to find complex roots of numbers: (e‘x) = cos(nx) + i sin(nx)

Those in Discrete Math (Math 226) could prove that the previous formula is
true for all values of n.

Calc | and Il (Math 150 and 155) often have to substitute in power reduction
formulas for powers of trigonometric functions.



